How to calculate the APY

Compound Interest Equation

A=P(1+r)nA = P(1 + r)^n

Where:

  • A = Total Accrued Amount (principal + interest)

  • P = Principal Amount

  • r = Rate of Interest for each epoch (3 seconds)

  • n = # of epochs

We have: r = 0.0000008755% 3 second = 1 epoch 1 year = 10512000 epochs

So:

A=P(1+0.0000008755)10512000=P(1+8259.92A = P(1 + 0.0000008755)^{10512000}= P(1+8259.92

So it means,

APY=(A/P1)100=992,936.66APY =(A/P -1)*100 = 992,936.66%

Same goes to other time periods.

Amonth=P(1+0.0000008755)20602430=P(1+1.09862A_{month}=P(1+0.0000008755)^{20*60*24*30}=P(1+1.09862
Aweek=P(1+0.0000008755)2060247=P(1+0.1888)A_{week}=P(1+0.0000008755)^{20*60*24*7}=P(1+0.1888)
Aday=P(1+0.0000008755)206024=P(1+0.025)A_{day}=P(1+0.0000008755)^{20*60*24}=P(1+0.025)
Ahour=P(1+0.0000008755)2060=P(1+0.001)A_{hour}=P(1+0.0000008755)^{20*60}=P(1+0.001)
Aminute=P(1+0.0000008755)20=P(1+0.0000171)A_{minute}=P(1+0.0000008755)^{20}=P(1+0.0000171)

0.00008755% per block (3 seconds) 0.001751% per minute 0.1576% per hour 3.789% per day 26.82% per week 120.15% per month 992,936.66% per year (APY)

Example:

P = $1,000

A = (After 1 year) = $ 8,275,265

Last updated